

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Gleason Metrology Systems (Michigan) Corporation

885 Manufacturer's Drive Westland, MI 48186-4036

Fulfills the requirements of

ISO/IEC 17025:2017

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at www.anab.org.

Jason Stine, Vice President

Expiry Date: 06 May 2026 Certificate Number: L2310

ANSI National Accreditation Board

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

Gleason Metrology Systems (Michigan) Corporation

885 Manufacturer's Drive Westland, MI 48186-4036 Keith Mandeville 734-326-7030

CALIBRATION

ISO/IEC 17025 Accreditation Granted: 06 May 2024

Certificate Number: L2310 Certificate Expiry Date: 06 May 2026

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-) ²	Reference Standard, Method, and/or Equipment
Inside Diameter - Plain Rings	(1.5 to 30) mm	0.71 µm	Comparison to Reference Rings or Gage Blocks using Mahr 828
	(30 to 200) mm	(0.66 + 0.000 8 <i>L</i>) μm	
	(200 to 450) mm	$(1.3 + 0.000 59L) \mu m$	
Over Roll Dimension – Flush Pin Gage	(0 to 152) mm	5.8 μm	Comparison to Roll-Chek RC, Pins and Gage Blocks
Involute Curve, Total Deviation – Reference Artifact, Gear, or Spline	Base Diameter: (5 to 650) mm	2.2 μm	Measurement using Gear Analyzer
Helix, Total Deviation – Reference Artifact, Gear, or Spline	Helix Angle: 0° to 42° Test Diameter: (5 to 650) mm	2.3 μm	Measurement using Gear Analyzer
Eccentricity/ Concentricity	Test Diameter: Up to 650 mm	0.62 μm	Measurement using Gear Analyzer
Pitchline Runout – Reference Artifact, Gear, or Spline	Test Diameter: Up to 650 mm	2.4 μm	Measurement using Gear Analyzer
Single Pitch – Reference Artifact, Gear, or Spline	Test Diameter: Up to 650 mm	1.1 μm	Measurement using Gear Analyzer
Cumulative Pitch –Reference Artifact, Gear, or Spline	Test Diameter: Up to 650 mm	1.8 µm	Measurement using Gear Analyzer

This Scope of Accreditation, version 014, was last updated on: 08 July 2025 and is valid only when accompanied by the Certificate.

ANAB

ANSI National Accreditation Board

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-) ²	Reference Standard, Method, and/or Equipment
Dimension over Pins- Reference Artifact, Gear, or Spline	Test Diameter Up to 650 mm	10 μm	Measurement using Gear Analyzer Pins: Customer Specified Diameter
Diameter- Reference Artifact, Gear, or Spline	Test Diameter Up to 650 mm	6.6 µm	Measurement using Gear Analyzer
Length Measurement - Plain Cylinders, Pin Gages and Part Dimensions	(0 to 500) mm	$(0.45 + 0.029L) \mu m$	Measurement using Mahr 828 & Gage Blocks
	(0 to 356) mm	(3.5 + 0.004 1 <i>L</i>) μm	Measurement using Heidenhain Height Gage System and Gage Blocks
	(0 to 305) mm	5 μm	Measurement using Height Master and Indicator
	(0 to 305) mm	13 μm	Measurement using Microkator and Gage Blocks
	(0 to 60) mm	0.61 µm	Measurement using Heidenhain Height Gage
	(0 to 25) mm (25 to 50) mm	5 μm 6.1 μm	Measurement using Micrometer
Fixtures, Gages and Masters	X = (0 to 1 200) mm Y = (0 to 1 800) mm Z = (0 to 1 000) mm	(2.5 + 0.004 1 <i>L</i>) μm	Measurement using Coordinate Measuring Machine as a Reference Standard for Dimensional Inspection. Material for CMC = Steel

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%.

Notes:

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
- 2. L =Length in millimeters.

Jason Stine, Vice President

